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Is vision good enough for language?



Given problem
• Visual Shortcomings

• Visual component typically depends only on the instance-level contrastive 
language-image pre-training (CLIP).

• They discover “MLLMs face challenges in nine prevalent patterns.”
• Orientation and Direction, Presence of Specific Features, State and Condition, 

Quantity and Count, Positional and Relational Context, Structural Characteristics, 
Texts, Viewpoint and Perspective, Color and Appearance
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Contributions
• Exploring the gap between the visual embedding space of CLIP and 

vision-only self-supervised learning.
• DINOv2

• Construction of MMVP benchmark
• Multimodal Visulal Patterns

• Mixture of Features (MoF)
• Enhancing prior work’s visual grounding capabilites
• Linealy mix CLIP and DINOv2

• Spatially mix visual tokens from both CLIP and DINOv2
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MMVP Benchmark
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• The underlying principle is simple: if two 
images, despite having stark visual 
differences, are encoded similarly by the 
CLIP vision encoder, then one of them is 
likely encoded ambiguously.

• Self-supervised model trained without any 
language guidance.
• DINOv2

• Collecting Image 
• ImageNet, LAION-Aesthetics
• Cosine similarity ≥ 0.95 in CLIP but ≤ 0.6 in 

DINOv2

The MMVP Benchmark
- Finding CLIP-blind pairs
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• 150 pairs with 300 questions
• The primary goal is to determine whether 

MLLM models would fail when posed with 
these seemingly basic questions and 
overlook critical visual details.

The MMVP Benchmark
- Finding CLIP-blind pairs
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• Assess the questions on SOTA open-source 
models and closed-source models.
• LLaVA-1.5, InstructBLIP, Mini-GPT4

• GPT-4V(ision), Gemini, Bard

• Also, User study.
• If both the questions associated with the 

pair are answered accurately → a pair of 
images to be correctly answered.

The MMVP Benchmark
- Benchmarking
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The MMVP Benchmark
- Naïve Results of benchmarking
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• Identifying the systematic visual patterns
• Using GPT-4

The MMVP Benchmark
- More specifically, identify 9 systematic visual patterns.
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The MMVP Benchmark
- Results (on CLIP based models)
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The MMVP Benchmark
- Results (on MLLMs and VLMs)
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The MMVP Benchmark
- Results (Pearson Correlation Coefficient btw CLIP and MLLMs)
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The MMVP Benchmark
- Results (Correlation w/ ZeroShot Performances)
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Mixture of Features
- Standard MLLM
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Mixture of Features
- Additive MoF
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Mixture of Features
- Experiment Details
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Mixture of Features
- Empirical Results of Additive MoF.
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Mixture of Features
- Interleaved MoF
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Mixture of Features
- Empirical Results of Interleaved MoF.

1) Li, Yifan, et al. "Evaluating object hallucination in large vision-language models." arXiv preprint arXiv:2305.10355 (2023).
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Mixture of Features
- Empirical Results of Interleaved MoF.
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Mixture of Features
- Empirical Results of Interleaved MoF.
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Conclusion
1. VLM and MLLM with built-in CLIP vision encoder only overlook crucial 

visual details in images and fail to properly classify important 
patterns.

2. Simply scaling data and models alone cannot resolve the inherent 
deficiencies in CLIP models.

3. Vision-and-language models and self-supervised learning-based 
vision models excel in different aspects, and these differences are 
difficult to capture using conventional benchmarks like ImageNet.

4.  Mixture-of-Features approach can leverage the strengths and mitigate 
the limitations of both paradigms.

5. However, developing new evaluation metrics is necessary to facilitate 
the development of new visual representation learning algorithms.
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Limitations
1. MMVP requires human annotation and contations only 300 QA pairs.
2. MMVP contains only 135 Clip-blind pairs

1. Each class only contains 15 images
2. Possible ambiguity in the bucketing of classes from GPT-4

3. Computationally expensive for minimal performance increase
• Two vision encoders

4. Other visual grounding performances are limited
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